
CS 137: Algorithms in the Real World Spring 2022
The purposes of this project are (1) to review C, (2) to give you a taste of what programming
for the real world is like, and (3) to understand the algorithms and formats behind an application
that you regularly use.

Project Overview

�

This project
runs best on
Linux. If you
do not have
a Linux ma-
chine, contact
Adam to get
a Labradoodle
account for the
purposes of
working on this
project.

This project is intended to be representative of all the remaining projects in the course. You will be
implementing a real application from scratch. By the end, you will fully understand how the zip utility
works–there will be no magic left. This project ramps up in difficulty pretty quickly. Task 1 is a “review”
task and should be a nice warm-up. Task 2 gives you a sense of what the rest of the course will be like.
Tasks 3 and 4 involve difficult design decisions and wrap the project together.

Restrictions
You must implement this project without starter code using C++, Rust, Zig, or D.

Deliverables
• myzip0 and myunzip0 as specified in Task 1.1 and Task 1.2
• inflate as specified in Task 2
• huffman as specified in Task 3.1
• lz77 as specified in Task 3.2
• myzip and myunzip as specified in Task 4.1 and Task 4.2

Task 1: Understanding the Zip Format
In this part, you will implement a bare-bones myzip0 utility which will be able to take a single file and
create a .zip archive containing that file. You will also implement a bare-bones myunzip0 utility which
will extract a single file from a .zip archive that only contains one file. Note that you will not be
compressing the file yet. First, we need to get a sense of what the .zip format looks like, then, later,
we’ll implement the compression.

The Zip Format
The full .zip format is very complicated and featureful, but we will only implement a small subset of it.
One of the major learning outcomes of these first few tasks is for you to realize that the “file formats” on
your computer are really just magic numbers along with a specification. While it is unnecessary, if you
are interested in reading the full specification for the zip format, it can be found at

https://pkware.cachefly.net/webdocs/casestudies/APPNOTE.TXT

This section we will provide you with everything you need to duplicate our restricted version of the zip
file format. Our zip files will insist that the zip archive only contain one file and not be encrypted. All of
our .zip archives will contain three sections (in order): (1) local file record, (2) central directory record,
(3) end of central directory record.

Local File Record
A “local file record” is made up of the following bytes:

1

https://pkware.cachefly.net/webdocs/casestudies/APPNOTE.TXT


Field Name Length Description
local file signature 4 bytes Use 0x04034b50
extract version 2 bytes Use 20
general purpose flag 2 bytes Use 0
compression method 2 bytes 0 means not compressed; 8 means compressed with DEFLATE
last mod file time 2 bytes Use 0
last mod file date 2 bytes Use 0
crc-32 4 bytes Use 0xdeadbeef
compressed file size 4 bytes Interpreted as an unsigned 32-bit integer
uncompressed file size 4 bytes Interpreted as an unsigned 32-bit integer
file name length 2 bytes Interpreted as an unsigned 16-bit integer
extra field length 2 bytes Use 0
file name variable The file name, interpreted as an ASCII string (no null-termination)
extra field variable Skip this field
file data variable If compression method is 0, this is just the file data; if compression

method is 8, this is a DEFLATE stream
Note that we will expect several of these to be incorrect values (in particular, the date/time stamps and
the crc-32). We make this decision because it doesn’t actually affect the archive, but it makes writing
the code substantially simpler.

Central Directory Record
A “central directory” record is made up the following bytes:

Field Name Length Description
central directory signature 4 bytes Use 0x02014b50
specification version 1 byte Use 30
made by 1 byte Use 65
extract version 2 bytes Use 20
general purpose bit flag 2 bytes Use 0
compression method 2 bytes 0 means not compressed; 8 means compressed with DEFLATE
last mod file time 2 bytes Use 0
last mod file date 2 bytes Use 0
crc-32 4 bytes Use 0xdeadbeef
compressed file size 4 bytes Interpreted as an unsigned 32-bit integer
uncompressed file size 4 bytes Interpreted as an unsigned 32-bit integer
file name length 2 bytes Interpreted as an unsigned 16-bit integer
extra field length 2 bytes Use 0
file comment length 2 bytes Use 0
disk number start 2 bytes Use 0
internal file attributes 2 bytes Use 1
external file attributes 4 bytes Use 1
offset of local header 4 bytes Use 0
file name variable The file name as an ASCII string (no null-termination)
extra field variable Skip this field
file comment variable Skip this field

2



End Of Central Directory Record
An “end of central directory” record is made up the following bytes:

Field Name Length Description
end of central dir signature 4 bytes Use 0x06054b50
number of this disk 2 bytes Use 0
number of the start disk 2 bytes Use 0
total number of entries on this disk 2 bytes Use 1
total number of entries 2 bytes Use 1
size of the central directory record 4 bytes Interpreted as an unsigned 32-bit integer
offset of start of central directory 4 bytes Interpreted as an unsigned 32-bit integer
.ZIP file comment length 2 bytes Use 0
.ZIP file comment variable Skip this field

The zipsplain Tool
We have provided you with a program called zipsplain which takes a zip archive path as a command-
line argument, and explains the contents of the zip by printing out the values for each of the fields. We
recommend you try running zipsplain on a few zip archives as well as the ones you create with your
own myzip0.

Task 1.1: Writing myzip0
It’s finally time for you to do something! Undoubtedly, you skipped some of the above description–that’s
okay, we all do it. Unfortunately, you will need to pay very close attention to the exact format of each type
of record as you are writing your myzip0 program. myzip0 should take two command-line arguments:
(1) the name of the output zip archive, and (2) the name of the file to put in the archive. You only have
to handle actual files with lengths. When run, your program should create a file with the provided name
in the zip format with the provided file using compression method 0 (which means “uncompressed”–we
will handle another compression method later).

Task 1.2: Writing myunzip0

�

myunzip0 may
NOT make the
assumptions
we’ve made in
myzip0 about
any of the
fields. It must
work on files
generated by
normal zip.

myunzip0 is the inverse of myzip0. It should take a single command-line argument (the name of the
zip file), and create a new file (or overwrite an old file) with the name and content specified in the zip
archive. If the zip archive specifies compression method 0, you should copy the file contents to a new
file with the name specified inside. If the zip archive specifies compression method 8, you should copy
the file contents to a new file with the name specified inside followed by .deflate (this is a non-standard
format that we will use to temporarily simplify our programs); that is, if the file name specified in the zip
archive is “hullo”, you should create a file called “hullo.deflate” (i.e., append .deflate to the file
name). You do not have to deal with non-conforming, corrupted zip files, zip files spread over multiple
disks, or compression methods other than 0 or 8, but you can print out an error message if you like.

�

BEFORE PRO-
CEEDING,
MAKE SURE
YOU HAVE
A SOLID UN-
DERSTAND-
ING OF HUFF-
MAN CODES
AND LZ77!!

Task 2: Inflating a File
So far, in myzip0 and myunzip0 , we skipped the compression and decompression which is the fun part!
In this task, you will implement decompression for mode “8” which tells your program to use compression
that conforms to the DEFLATE specification. When you’re done, you should be able to take files in the
.deflate format and recover the original file. We ask you implement these algorithms in a separate
binary called inflate, (which you will combine into myzip and myunzip later). If your inflate binary
is given a file x.deflate, you should create a file called x with the decompressed contents. If the input
file does not end in .deflate, behavior is undefined.

3



The DEFLATE Format
The DEFLATE Compressed Data Format is the compression format behind zip, gzip, png, and many more
file formats. We will implement a generic program that takes a raw DEFLATE stream and decompresses
it into the original file. To do this, we’ll need to get into the nitty-gritty details of bits in DEFLATE files.
The RFC (“request for comments”–a description of an internet-related format or idea) for DEFLATE can
be found here:

https://www.ietf.org/rfc/rfc1951.txt

That said, we strongly recommend NOT attempting to read the RFC directly. It is not meant as
a way to learn about how to implement the format; rather, it serves as a “standards” document. We
have broken down and synthesized various parts of this document for you in the following sections. If
something is not clear, we recommend asking the course staff rather than reviewing the RFC, but you are
welcome to read it if you like.

Reading Bits
Imagine the bitstream looks like this:
bitstream b0 b1 b2 b3 b4 b5 b6 b7 b8 b9 b10 b11 b12 b13 b14 b15 · · ·

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

In memory, this looks like one byte: b7b6b5b4b3b2b1b0, followed by another byte: b15b14b13b12b11b10b9b8,
etc. That is, bytes should be read from least-significant-bit to most-significant bit. (We call this “reverse-
stream order.”) We recommend writing a “get_next_bit” function as a primitive to use in all your other
functions. This is not an optimized way to work with the stream, but it is logically the easiest place to
start.

�

Some numbers
in a DEFLATE
stream should
be read in re-
verse stream
order which
means “10”
indicates “1”,
and others
should be read
in stream or-
der. We try to
specify this in-
line everywhere.

The deflatesplain Tool
Just like in the previous part, we provide you with a tool that reads and explains the file format. This
one is called deflatesplain. We recommend running it on various raw DEFLATE streams as you try to
convert them manually. To generate a raw DEFLATE stream, you should use the standard zip utility to
generate a .zip file, and then use your myunzip to generate a .deflate file.

Blocks
DEFLATE streams are made up of “blocks” (pieces of the decoded output). Every block begins with a
single bit (BFINAL) that indicates whether it is the final block (1) or is not the final block (0). This bit
is followed by two reverse-stream order bits (BTYPE) that indicate which type of compression was used
for the current block: no compression (0), fixed Huffman codes (1), and dynamic Huffman codes (2).
Your code does not need to handle the no compression case.

Alphabets
DEFLATE streams have already been compressed with huffman coding and LZ77 which means we read the
stream in a special way. In particular, each “part” of the bitstream is a prefix-free Huffman coded value.
That value can be (1) a literal, (2) a number of characters to repeat (a length), (3) an end-of-block
character, or (4) a number of characters to go back in the buffer (a distance).

�

The look-
behind buffer
should not be
reset between
blocks.

DEFLATE utilizes two conceptually distinct alphabets: literal-length and distance. The literal-length al-
phabet encodes literals (0-255), the “end of block code” (256), and lengths of repetitions (257-285). The
distance alphabet (0-29) encodes the distances to go back when we hit a repeat. With fixed Huffman
codes, the Huffman codes are given by the specification; for dynamic Huffman codes, the Huffman codes
are specified as part of the bitstream. We begin with inflating fixed Huffman codes, because they are
conceptually simpler.

4

https://www.ietf.org/rfc/rfc1951.txt


Task 2.1: Inflating Fixed Huffman Codes
Consider the following DEFLATE stream:

1 10 10010001 10010001 0000010:00000 0000000 00
BFINAL BTYPE a a len 4 : go back 1 EOB EOS-FILL

Notice that this stream is a single block (because BFINAL is set) and it is a fixed Huffman code block
(because BTYPE=1). “10010001” decodes to “a”, “0000010” indicates a repeat of length four, “00000”
represents “move the buffer pointer one character back”, “0000000” is the end-of-block character, and
“00” is a necessary filler (at the end of the entire stream) to make the number of bits a multiple of 8.
What remains is to discuss how to figure out all of the Huffman codes.

To decode symbols from the literal-length alphabet, we first attempt to match with 7 characters, then 8,
then 9, as necessary, using the following conversions. In this case, we can treat all the codes as numbers,
because they have been designed to allow that simplification. Note that these conversions should be read
in stream order.

0000000 − 0010111 ←→ 256 − 279

00110000 − 10111111 ←→ 0 − 143

11000000 − 11000111 ←→ 280 − 287

110010000 − 111111111 ←→ 144 − 255

Looking back to our above example stream and recalling that “a” is 97 in ASCII, we see that the chart
marks (00110000)2 + (97)10 = (145)10 = (10010001)2 as required!

Following this algorithm on the next bits in the stream, we find a match on (0000010)2 + (256)10 =
(258)10. Since 258 is larger than 256, it must be a length. The conversion for lengths is:

257 (+0 bits) = 3

258 (+0 bits) = 4

259 (+0 bits) = 5

260 (+0 bits) = 6

261 (+0 bits) = 7

262 (+0 bits) = 8

263 (+0 bits) = 9

264 (+0 bits) = 10

265 (+1 bit ) = 11 to 12

266 (+1 bit ) = 13 to 14

267 (+1 bit ) = 15 to 16

268 (+1 bit ) = 17 to 18

269 (+2 bits) = 19 to 22

270 (+2 bits) = 23 to 26

271 (+2 bits) = 27 to 30

272 (+2 bits) = 31 to 34

273 (+3 bits) = 35 to 42

274 (+3 bits) = 43 to 50

275 (+3 bits) = 51 to 58

276 (+3 bits) = 59 to 66

277 (+4 bits) = 67 to 82

278 (+4 bits) = 83 to 98

279 (+4 bits) = 99 to 114

280 (+4 bits) = 115 to 130

281 (+5 bits) = 131 to 162

282 (+5 bits) = 163 to 194

283 (+5 bits) = 195 to 226

284 (+5 bits) = 227 to 257

285 (+0 bits) = 258

�

286 and 287
will never ap-
pear in a valid
DEFLATE file!

258 does indeed represent length 4. Notice that some of these have a “+n bits” designation. This means
that after reading the length code, you should read n more bits, chunk them into a number and index
into the range (on the right side of the equals sign) using that number (these bits need to be interpreted
in reverse-stream order). Immediately after a length code, we will always see a “distance code”. (Recall
that LZ77 needs a length and a distance to index into the look-behind buffer.)
Distance codes are always 5-bit numbers (in stream order) potentially followed by extra digits interpreted
in the same way as with the length codes. To interpret 5-bit distance codes, we use a similar chart as
above:

5



0 (+0 bits) = 1

1 (+0 bits) = 2

2 (+0 bits) = 3

3 (+0 bits) = 4

4 (+1 bits) = 5 to 6

5 (+1 bits) = 7 to 8

6 (+2 bits) = 9 to 12

7 (+2 bits) = 13 to 16

8 (+3 bits) = 17 to 24

9 (+3 bits) = 25 to 32

10 (+4 bits) = 33 to 48

11 (+4 bits) = 49 to 64

12 (+5 bits) = 65 to 96

13 (+5 bits) = 97 to 128

14 (+6 bits) = 129 to 192

15 (+6 bits) = 193 to 256

16 (+7 bits) = 257 to 384

17 (+7 bits) = 385 to 512

18 (+8 bits) = 513 to 768

19 (+8 bits) = 769 to 1024

20 (+9 bits) = 1025 to 1536

21 (+9 bits) = 1537 to 2048

22 (+10 bits) = 2049 to 3072

23 (+10 bits) = 3073 to 4096

24 (+11 bits) = 4097 to 6144

25 (+11 bits) = 6145 to 8192

26 (+12 bits) = 8193 to 12288

27 (+12 bits) = 12289 to 16384

28 (+13 bits) = 16385 to 24576

29 (+13 bits) = 24577 to 32768

Finally, every block ends with an end-of-block code which is always the code word for 256. In the case of
fixed Huffman codes, this is “0000000”. Note that these bit-streams must be byte-aligned; so, there may
be extra garbage bits to throw away at the very end of the stream.

Here is another example of a fixed code stream. We recommend you work through it by hand.
1 10 10010001 10010010 10010011 10010100 10010001 0000101:00011 10010101 00111010 0000000 00
BFINAL BTYPE a b c d a len 7 : go back 4 e \n EOB EOS-FILL

Task 2.2: Inflating Dynamic Huffman Codes
There are only a few differences between dynamic and fixed Huffman codes, but those differences are
non-trivial. Between the BTYPE and the actual content bits, there are several pieces which, together,
make up the Huffman trees for both alphabets. For “even greater compactness”, the Huffman trees
themselves are compressed. . . with another hardcoded Huffman code. (Yay, fun.)

Canonical Huffman Codes
To specify the various different Huffman codes, the DEFLATE specification uses canonical Huffman codes
which allows the stream to only include the lengths of each symbol. Canonical Huffman codes add two
additional rules to standard Huffman coding: (1) all codes of a particular bit-length have lexicographically
consecutive values, (2) shorter codes are lexicographically before longer codes. To read a canonical
Huffman code, use the following algorithm:

(1) Count the number of codes for each code length by populating an array bl_count, where bl_count[N]
is the number of codes of length N. Make sure to set bl_count[0] = 0.

(2) Find the numerical value of the smallest code for each code length with the following algorithm:
1 code = 0
2 for (i = 1; i <= max_length; i++) {
3 code = (code + bl_count[i−1]) << 1
4 next_code[i] = code
5 }

(3) Loop through the alphabet in lexicographical order and assign consecutive values starting length i
at next_code[i]

For example, imagine that we read in the following lengths: 3, 3, 3, 3, 3, 2, 4, 4, and the (known)
alphabet order is A, B, C, D, E, F, G, H. Then, we can make the following association:

A 3
B 3
C 3
D 3
E 3
F 2
G 4
H 4

6



Going through the algorithm with these code length associations:

(1) bl_count[0] = 0
bl_count[1] = 0
bl_count[2] = 1
bl_count[3] = 5
bl_count[4] = 2

(2) next_code[1] = 0
next_code[2] = 0
next_code[3] = 2
next_code[4] = 14

(3) A = “2” at length 3 = 010
B = “3” at length 3 = 011
C = “4” at length 3 = 100
D = “5” at length 3 = 101
E = “6” at length 3 = 110
F = “0” at length 2 = 00
G = “14” at length 4 = 1110
H = “15” at length 4 = 1111

Dynamic Code Block Header
Just like fixed blocks, dynamic blocks begin with BFINAL (1 bit) followed by BTYPE (2 bits). After these
two fields, there are three numbers (in reverse stream order): HLIT (5 bits), HDIST (5 bits), HCLEN (4
bits). HLIT + 257 is the number of Huffman codes representing the length-literal codes, HDIST + 1
is the number of Huffman codes representing distance codes, and HCLEN + 4 is the number of “code
length” codes. The “code length” codes are used to decode the literal/length and distance codes. So,
our first task is to re-construct the canonical Huffman code for the code length alphabet.

Dynamic Code Block Alphabets
The code length alphabet is made up of the numbers 0 - 18. This alphabet is used to specify the lengths
of the Huffman codes for the remaining two alphabets. In particular, the numbers should be interpreted
as follows:

• 0− 15: These numbers indicate that the next code is of that literal length

• 16 (+2 bits): 16 indicates that the previous code should be copied; the two bits specify how many
times (between 3 and 6)

• 17 (+3 bits): 17 indicates that the next chunk of codes are all 0; the three bits specify how many
times (between 3 and 10)

• 18 (+7 bits): 18 indicates that the next chunk of codes are all 0; the seven bits specify how many
times (between 11 and 138)

�

Remember
to use lexico-
graphical order
in the canonical
Huffman codes
algorithm–not
the order they
are specified.

The remaining two alphabets, you are already familiar with: the literal-length alphabet and the distance
alphabet. The Huffman codes for each of these alphabets will be specified by their lengths (because they
are canonical Huffman codes)–which will be specified using the code length alphabet.

Dynamic Code Block Body
After the header fields, there are three “groups” of bits which specify the three alphabets:

• (HCLEN + 4) × 3 bits: the codes for the “code length alphabet” which is made up of the numbers
0 through 18. Note that the number of code lengths specified here is variable; the stream may omit

7



code lengths at the end (and we will assume those are unused). The order of the code lengths is
16, 17, 18, 0, 8, 7, 9, 6, 10, 5, 11, 4, 12, 3, 13, 2, 14, 1, 15. Each code is specified as a 3-bit
(reverse stream) integer. A code length of 0 means that that symbol is unused in the alphabet
specifications. When specifying codes, each of these numbers has the meaning described above.
After using the canonical Huffman code algorithm to recover the code length alphabet, we are ready
to decode the remaining two alphabets using the above translation. Note that this stream should
be treated as one giant list of “codes” that eventually get separated into two alphabets.

�

There may be
fewer codes
than the num-
ber of symbols,
because a sin-
gle code in
this stream
can represent
more than one
length.

• HLIT + 257 Huffman codes (in the code length alphabet) for the literal/length alphabet which is
made up of numbers 0 - 285.

• HDIST + 1 Huffman codes (in the code length alphabet) for the distance alphabet which is made
up of the numbers 0 - 29.

After the codebooks are decoded, we are finally ready to decompress the actual data. The remaining
format of the block is identical to the fixed codes (including the end-of-block character at the end)
except the actual Huffman codes used. Unfortunately, unlike the fixed codes, it is possible that the
same numerical number will be used as two different length codes. For example, it’s possible that 0001
and 1 are both valid codes in an alphabet. We recommend you store codes as numerical values BY
LENGTH. (Think of this as a 2-dimensional-array-like structure). We have deliberately not described the
full algorithm or data structure here as we want you to figure it out on your own.
You should implement these algorithms in a binary called inflate. inflate should take the input file
name as a single argument and output to a file with the same name without the suffix .deflate. (So,
an input file x.deflate would output to a file called x.)

Task 3: Deflating a File with Fixed Huffman Codes
Deflation requires more design decisions than the previous parts. There are many algorithms that can be
used to effectively compress files into the DEFLATE format, and we only specify a single one here. Keep
in mind that you can (and should!) diverge from our algorithm if you think you have something better or
more effective. We consider our algorithm to be a “baseline”, and it can be significantly improved with
a little effort. Note that we will only use fixed Huffman codes for compression, but you could implement
a switch to dynamic Huffman codes as above and beyond.

Task 3.1: Huffman Coding
As a first pass, you should only do the Huffman coding and treat the entire file as a single block. You will
need to pay close attention to bit order, and the codes will need to be “reversed” (remember, we have to
respect the stream ordering). To output the codes, you will need to segment the bits into bytes inside an
integer buffer. Make sure to reference the fixed Huffman codes we previously used to decode symbols;
you will be writing the inverted transformation this time! Ultimately, this means that you will output
the header, a bunch of Huffman codes, and then the end-of-block character. You should write this code
separately in a binary called huffman. huffman should take the input file name as a single argument and
output to a file with the same name and the suffix .deflate. (So, an input file x would output to a file
called x.deflate.)

Task 3.2: Self-Contained LZ77 Compression
Before we add in LZ77 to our Huffman codes, it is beneficial to write a separate binary that writes out
LZ77 compressed text in a readable format. In this task, we will describe a baseline LZ77 algorithm to
implement along with the expected output. Recall that LZ77 compression outputs two “types” of symbols:
literals and length-distance pairs. You should output literals as themselves and length-distance pairs as
<length,distance>. So, the file “aaaaaa” might be output as “a<5,1>”. You should implement this
algorithm in a separate binary called lz77. lz77 should take the input file name as a single argument

8



and output to a file with the same name and the suffix .lz77. (So, an input file x would output to a file
called x.lz77.)
There are several restrictions on what we’re allowed to do in our compression based on the DEFLATE
specification:

• Our sliding window cannot be bigger than 32K (32768 bytes)

• Lengths cannot be smaller than 3 or larger than 258.

• Distances cannot be larger than 32768

Beyond that, we are free to replace whatever characters we want with length-distance pairs; on one
extreme, we have the situation from the previous section (where we never use length-distance pairs), and
on the other extreme we have the “optimal” compression ratio which chooses exactly the right places to
use length-distance pairs to minimize the file length. In an ideal world, we would have the latter, but, in
practice, it would take far too long to actually compute; so, we settle for “pretty good”.
Now, we discuss our algorithm to compress “enough” using LZ77 which we call lz77_baseline.
We keep two indices into the window: idx (the location of the next byte to output) and lookahead_idx
(the location of the last byte we’ve actually seen). In addition to the window, we keep a hash table with
three byte keys and a list of corresponding positions in the window that match that hash code.
For example, if the stream is “abcabcd”, our hash table would conceptually look like:

{
abc: 3 -> 0 -> NULL,
bca: 1 -> NULL,
bcd: 4 -> NULL,
cab: 2 -> NULL

}

Since our hash table has three-byte keys, we take as an invariant that we always look ahead two bytes (so
that instead of looking for a single byte, we’re always looking up three). If there are multiple matches (for
example, abc above), we take the (1) longest and (2) closest match (prioritizing length over closeness);
to facilitate this, we always prepend new positions into the hash chains rather than appending them. To
simplify implementation, we do not ever delete from the chains (though, we DO have to check that a
match is not too old before choosing it).
Finally, we can write pseudocode for lz77_baseline:

1 lz77_baseline():
2 initialize our current match as non−existent
3 while there are bytes left:
4 read in bytes until we have at least three unprocessed ones and add them to the buffer
5 look up the next three bytes in the hash table
6 if we found a longer match that is no more than max length:
7 update our current match with the one we found in the hash table
8 else:
9 if there is a current match:

10 output the match
11 else:
12 output the next byte as a literal
13 update the hash table

There are (clearly) details we have omitted from our pseudocode (for example, how to actually look for
the match), but this is the basic algorithm we recommend you implement first. We recommend you check
your implementation on “obviously compressible data" (repeated “a” bytes, a wikipedia page, etc.).

9



Task 3.3: Adding LZ77 Compression To Your Huffman Compression
Combine your Task 3.1 and Task 3.2 implementations to integrate your LZ77 implementation into the
code that outputs a DEFLATE stream. In particular, this will involve translating literals and length-distance
codes into their fixed Huffman code equivalents.

Task 4: Combining Everything
We now have two conceptually separate pieces of zip: (1) programs that generate and deconstruct zip
files, and (2) programs that compress and decompress using method 8. In this task, your job is to combine
these pieces into one final product.

Task 4.1: Writing myzip
Integrate your code for method 8 into your code for myzip.

Task 4.2: Writing myunzip
Integrate your code for method 8 into your code for myunzip.

10


