CS 137: Algorithms in the Real World Spring 2022
SSH keygen

The purposes of this project are to (1) explore cryptography, and (2) implement the algorithms
that back semi-numerical operations.

Project Details

In this project, you will write the fundamental pieces of modern authentication protocols. In particular,
you will build a multi-precision number library, and implement RSA key generation.

Project Restrictions

You must implement this project using the C Programming Language. You may use the provided stripped
down version of mbedtls in addition to 1ibc. We will use C to match the low level of the algorithms we
will be working with. Please note that we are implementing a stripped down version of an open source
library; this means a solution to the project is readily available on the internet. It would, clearly, be an
honor code violation to look at or use this (or any other) implementation.

Deliverables
= A multi-precision integer library (1ibbigint)

= An RSA Key Generator (keygen)

Part 1: 1ibbigint

In this part, you will implement a multi-precision integer library which will get used as the backing for
the key generation utility. Your library must implement the following public interface in accordance with
the specifications given with each function. Note that many functions return ints as error values; possible
values are specified in bigint.h.

bigint Representation

We represent a big integer as an array of 64-bit “digits”, a sign bit, and a number of "digits”. Conceptually,
we are storing the number in base 264 which is convenient because it matches the instruction width of
the machines we will use. Because "digits” usually refer to base 10, we will use the (somewhat) standard
terminology “limb" to refer to the equivalent idea in a multi-precision integer. We call the limb type
big_uint.

Task 1.1: Lifecycle Functions

void big_init(bigint x*X)

Initializes X to be ready for other bigint operations.

void big_free(bigint x*X)

Frees all memory associated with the bigint X.

int big_copy(bigint *X, const bigint xY)

Replaces the value of the bigint X with the value of the bigint Y. Y should remain unchanged.




size_t big_bitlen(const bigint *X)

Returns the smallest number of bits necessary to represent X. That is, returns the number of bits in
the value of X up to and including the most-significant 1.

size_t big_size(const bigint x*X)

Returns the total size of X in bytes.

int big_set_nonzero(bigint *X, big_uint limb)

Set X to a single nonzero limb.

Task 1.2: 1/0 Functions

int big_read_string(bigint *X, const char x*s)

Sets the value of X to the value of the hexadecimal string, s. Returns 0 on success and an appropriate
error code on failure.

Since exactly 16 hexadecimal digits make up a 64-bit limb, we can use the standard base con-
version algorithm on groups of 16 hex digits. For example, we convert the hexadecimal number
1234567890ABCDEF1234 to two limbs by

(1) padding it to a multiple of 16 digits: 0000000000001234567890ABCDEF1234
(2) chunking it into groups of 16
(3) converting each group to base 10 using the standard hex-to-decimal conversion.

Your algorithm should correctly handle leading zeroes.

int big_write_string(const bigint *X, char xbuf, size_t buflen,
size_t xolen)

Writes the value of X, as a hexadecimal string (including null terminator), to the buffer buf. Returns
0 on success and an appropriate error code on failure. Regardless of result, sets *olen to the number
of bytes that should have been written (including null terminator).

Repeatedly mod and divide each limb by 16, 16 times for each limb. Your algorithm should make
sure to remove all leading zeroes.

int big_read_binary(bigint *X, const unsigned char xbuf, size_t buflen)

Sets the value of X to the value of the buffer buf, where buf is a big endian (most-significant-byte
first) representation of X. Returns 0 on success and an appropriate error code on failure.

The representation should match the base-256 representation expected in SSH keys, as discussed in
class.




int big_write_binary(const bigint %X, unsigned char xbuf, size_t buflen)

Writes the value of X, as a big endian (most-significant-byte first) string, to the buffer buf. Returns
an appropriate error code if the binary representation of X does not fit in buflen bytes.

The representation should match the base-256 representation expected in SSH keys, as discussed in
class.

Task 1.3: Core Operations

int big_add(bigint *X, const bigint %A, const bigint =*B)

Sets the value of X to the sum of the values of A and B. Note that X, A, and B might refer to the
same location in memory. Returns 0 on success and an appropriate error code on failure.

You should use the grade-school addition algorithm described in the algorithms document.

int big_sub(bigint *X, const bigint *A, const bigint x*B)

Sets the value of X to the difference of the values of A and B. Note that X, A, and B might refer to
the same location in memory. Returns 0 on success and an appropriate error code on failure.

You should use the grade-school subtraction algorithm analogous to the addition algorithm.

int big_cmp(const bigint *X, const bigint xY)

Returns the following:
» 0iffX=Y

s —1iffX<Y

s 1iffX>Y

int big_mul(bigint *X, const bigint *A, const bigint *B)

Sets the value of X to the product of the values of A and B. Note that X, A, and B might refer to the
same location in memory. Returns 0 on success and an appropriate error code on failure.

You should use the grade-school multiplication algorithm discussed in the algorithms document. A
possible above-and-beyond extension would be to implement a switch to Karatsuba multiplication,
Toom-Cook multiplication, and/or FFT multiplication at reasonable thresholds.

int big_div(bigint *Q, bigint *R, const bigint %A, const bigint =*B)

Sets the value of Q to the quotient of the values of A and B. Sets the value of R to the remainder
of the values of A and B. If Q or R is NULL, this function does not compute the corresponding value.
Note that Q, A, and B might refer to the same location in memory. Returns 0 on success and an
appropriate error code on failure or if the value of B is 0.

You should use grade-school division algorithm described in the Handbook of Applied Cryptography.
A possible above-and-beyond extension would be to implement Burnikel-Ziegler division.



http://cacr.uwaterloo.ca/hac/about/chap14.pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.47.565&rep=rep1&type=pdf

Task 1.4: Modular Operations

int big_gcd(bigint *G, const bigint *A, const bigint xB)

Sets the value of G to the greatest common divisor of the values of A and B.

We recommend that you implement this function iteratively (i.e., not recursively).

int big_inv_mod(bigint %X, const bigint *A, const bigint *N)
Sets the value of X such that, for some k € Z, AX + kN = 1.

You should use the extended euclidean algorithm to implement this. Again, you should not do it
recursively.

int big_exp_mod(bigint *X, const bigint %A, const bigint x*E,
const bigint *N, bigint *_RR)

Sets the value of X to the value of A mod N

Your implementation must use repeated squaring and Montgomery Multiplication as discussed in the
algorithms document.

Task 1.5: Primality Operations

int big_is_prime(const bigint *X)

Returns 1 if the value of X is “probably prime".

Your implementation should use the Miller-Rabin algorithm with a pass over small potential divisors.

int big_gen_prime(bigint *X, size_t nbits)

Sets the value of X to a random prime with approximately nbits bits.

Make sure to set the lowest bit to 1!

Part 2: keygen

In this part, you will implement RSA key generation which is compatible with the standard OpenSSH
implementation of ssh.

Your bigint library has almost everything you need to do key generation. We have provided a private key
implementation (rsa_private_key.c), a base64 implementation (base64.c), and a main (keygen.c)
The only remaining things to implement are the actual key generation, and writing the public key.

void rsa_init(rsa_context *xctx)

Initializes ctx to be ready for other RSA operations.




void rsa_free(rsa_context *xctx)

Frees all memory associated with ctx.

int rsa_gen_key(rsa_context *ctx, size_t nbits, uint64_t exponent)

Generate an RSA private key with the requested number of bits, and e = exponent. Return 0 on
success and an appropriate bigint error code otherwise.

Follow the restrictions from the notes, reproduced here:
» ged(e,p(n)) = 1 (otherwise, we wont be able to find d)

= d should be calculated as e~ mod lcm(p — 1, — 1) (this leads to a *slightly* better d than
¢ does)

= We insist d > 2P1ts/2 to avoid attacks abusing small d
= We insist [p — q| > 2P®/2-100 {5 avoid Fermats factorization attack

Additionally, the RSA context contains some intermediate computations for the private key, which
should be filled in upon key generation.

int rsa_write_public_key(const rsa_context xctx, FILE xfile)

Write the public key to the given file, following the public key format described in the RSA keygen
document.

The cool part is actually trying your SSH key. To do this, copy your public key to a remote server using
the ssh-copy-id command, and then use the -i option of ssh to use your key. If it doesn’t ask you for
a password, then it worked!



